

PII: S0277-5387(97)00011-9

# Crystal structures of chloro(*meso*tetraphenylporphyrinato)germanium(IV), Ge(tpp)Cl<sub>2</sub>, and dihydroxo(*meso*tetraphenylporphyrinato)germanium(IV), Ge(tpp)(OH)<sub>2</sub>, and two-stage hydrolysis of its homologue dimethoxo(*meso*tetraphenylporphyrinato)germanium(IV), Ge(tpp)(OMe)<sub>2</sub>

Shwu-Juian Lin,<sup>a</sup> Yao-Jung Chen,<sup>a\*</sup> Jyh-Horung Chen,<sup>a\*</sup> Feng-Ling Liao,<sup>b</sup> Sue-Lein Wang<sup>b</sup> and Shin-Shin Wang<sup>c</sup>

<sup>a</sup> Department of Chemistry, National Chung-Hsing University, Taichung 40227, Taiwan

<sup>b</sup> Department of Chemistry, National Tsing-Hua University, Hsin-Chu 30043, Taiwan

<sup>e</sup> Union Chemical Laboratories, Hsin-Chu 30043, Taiwan

(Received 30 September 1996; accepted 12 December 1996)

Abstract—The crystal structures of chloro(meso-tetraphenylporphyrinato)germanium(IV), Ge(tpp)Cl<sub>2</sub>, dimethoxo(meso-tetraphenylporphyrinato)germanium(IV),  $Ge(tpp)(OMe)_2$ , and dihvdroxo(meso-tetraphenylporphyrinato)germanium(IV), Ge(tpp)(OH), were determined. The coordination sphere of the Ge<sup>4+</sup> ion is a distorted octahedron in which the apical sites are occupied by two monodentate Cl<sup>-</sup> (or OMe<sup>-</sup>, OH<sup>-</sup>) groups. The geometry around the germanium centre of the  $Ge(tpp)Cl_2$  molecule has Ge(1)—Cl(1) = 2.262(1)and Ge(1)—N(1) = 2.019(2) Å. In the structure of Ge(tpp)(OMe)<sub>2</sub> the germanium(1)-oxygen distance is 1.826(3), average Ge(1)—N = 2.032(3), and O(1)—C(23) = 1.331(6) Å. The structure of Ge(tpp)(OH)<sub>2</sub> has Ge(1)—O(1) = 1.809(3) and Ge(1)—N(1) = 2.027(2) Å. Two-stage hydrolysis of  $Ge(tpp)(OMe)_2$  was studied by <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy. The use of a limited amount of water in CDCl<sub>3</sub> (or CD<sub>2</sub>Cl<sub>3</sub>) allowed the hydrolysis intermediate, hydroxomethoxo(meso-tetraphenylporphyrinato)germanium(IV), Ge(tpp)(OMe) (OH), and hydrolysis product, dihydroxo(meso-tetraphenylporphyrinato)germanium(IV), Ge(tpp)(OH)<sub>2</sub>, to be identified. X-ray diffraction data and solid-state <sup>13</sup>C CP/MAS spectra of Ge(tpp)(OMe)<sub>2</sub> provide evidence for two monodentate methoxo groups coordinated to the germanium(IV) atom. © 1997 Elsevier Science Ltd

*Keywords*: crystal structure; germanium porphyrins; <sup>13</sup>C CP/MAS; two-stage hydrolysis; monodentate ligand; *trans* geometries.

Kenney and coworkers [1] first reported the synthesis and <sup>1</sup>H NMR characterization of dichloro(*meso*-tetraphenylporphyrinato)germanium(IV), Ge(tpp)Cl<sub>2</sub>, and dihydroxo(*meso*-tetraphenylporphyrinato)germanium(IV),  $Ge(tpp)(OH)_2$ . The structures of the dimethoxyporphyrinatogermanium(IV),  $Ge(p)(OMe)_2$  [2], difluoro(octaethylporphyrinato)germanium(IV),  $Ge(oep)F_2$  [3],  $Ge(tpp)(OOCH_2CH_3)_2$  [4], and  $Ge(tpp)(OCH_2CH_3)_2$  [4], have been published. As  $Ge(tpp)Cl_2$  (1) and  $Ge(tpp)(OH)_2$  (4) are the starting materials for the preparation of these  $Ge^{IV}$  tpp

<sup>\*</sup> Author to whom correspondence should be addressed.

di(alkoxy) and diffuoro complexes, it is important to determine their structures precisely. Details of the synthetic work were reported elsewhere [1]. We report here the structures of  $Ge(tpp)Cl_2$  (1) and Ge(tpp)(OH)<sub>2</sub> (4) derived from <sup>13</sup>C NMR and X-ray diffraction. Meanwhile, Ge(p)(OMe)<sub>2</sub> was found to be hydrolytically unstable [2]. When the porphyrin group of Ge(p)(OMe)<sub>2</sub> was substituted by tetraphenylporphyrin,  $Ge(p)(OMe)_2$  became dimethoxo(meso-tetraphenylporphyrinato) germanium(IV)  $Ge(tpp)(OMe)_2$  (2). Previously, we reported the two-stage (or two-step) hydrolysis of dimethoxo(meso-tetraphenylporphyrinato)tin(IV), Sn(tpp)(OMe)<sub>2</sub> [5], and dimethoxo(tetra-p-tolyporphyrinato)tin(IV), Sn(tptp)(OMe)<sub>2</sub> [6]. It led us to think that complex  $Ge(tpp)(OMe)_2$ , the same Group 14 metals as Sn(tpp)(OMe)<sub>2</sub>, might undergo a similar two-stage hydrolysis reaction in the presence of water. Compound 2 was easily prepared by the previously reported method [2] and its X-ray structure and solidstate <sup>13</sup>C CP/MAS data are reported here.

#### **EXPERIMENTAL**

### Syntheses

Ge(tpp)Cl<sub>2</sub> (1). Compound 1 was prepared as previously reported [1], except that the resultant purple crystalline compound was recrystallized from CHCl<sub>3</sub>/*n*-hexane and vacuum dried. The crystals were grown by diffusion of ether vapor into a CHCl<sub>3</sub> solution. It was dissolved in CDCl<sub>3</sub> (99.8% from CIL) for <sup>1</sup>H (Table 1) and <sup>13</sup>C (Table 2) NMR measurement at 24°C.

 $Ge(tpp)(OH)_2$  (4).  $Ge(tpp)Cl_2$  (1. 99 mg, 0.13 mmol) in CHCl<sub>3</sub> was treated with  $Al_2O_3$  (3 g, neutral,

activity V) and stirred for 30 min. After concentrating, it was passed down a column of alumina (25 g, neutral, activity V). The major red band eluting with CHCl<sub>3</sub> was collected and concentrated and then recrystallized from CHCl<sub>3</sub>/*n*-hexane. It gave Ge(tpp)(OH)<sub>2</sub> (78 mg, 84%). The crystals were grown by diffusion of *n*hexane vapor into a CHCl<sub>3</sub> solution. Ge(tpp)(OH)<sub>2</sub> (4) was dissolved in CDCl<sub>3</sub> (or CD<sub>2</sub>Cl<sub>2</sub>) for NMR measurement at 24°C (shown in Tables 1 and 2).

Ge(tpp)(OMe)<sub>2</sub> (2). The crystals of compound 2 were obtained by allowing methanol to diffuse into a nearly saturated solution of Ge(tpp)(OH)<sub>2</sub> in CHCl<sub>3</sub>. It was dissolved in CDCl<sub>3</sub> (or CD<sub>2</sub>Cl<sub>2</sub>) for NMR measurement at 24°C (shown in Tables 1 and 2).

## Spectroscopy

<sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded at 400.13 (or 600.20) and 100.61 (or 150.93) MHz, respectively, on a Bruker AM-400 spectrometer (or Bruker DMX-600) in CDCl<sub>3</sub> or CD<sub>2</sub>Cl<sub>2</sub>. <sup>13</sup>C NMR data are relative to the centerline of CDCl<sub>3</sub> at 77.0 ppm (or CD<sub>2</sub>Cl<sub>2</sub> at 53.6 ppm). The solid-state <sup>13</sup>C CP/MAS MSL-200 solid-state NMR spectrometer. Dry nitrogen gas was used to drive MAS rates of 3.2 KHz.

# Crystallography

Crystal data and other information for Ge(tpp)Cl<sub>2</sub> (1), Ge(tpp)(OMe)<sub>2</sub> (2) and Ge(tpp)(OH)<sub>2</sub> (4) are given in Table 3. Measurements were made on a Siemens SMART CCD diffractometer using monochromatized Mo-K $\alpha$  radiation ( $\lambda = 0.71073$  Å) via the  $\omega : 2\theta$  scan technique. Absorption corrections were

| Compounds            | β-Н  | o-H                 | <i>m</i> , <i>p</i> -H | OMe   | ОН                  |
|----------------------|------|---------------------|------------------------|-------|---------------------|
| $Ge(tpp)(OMe)_2$ (2) | 9.02 | 8.28                | 7.79                   | -2.57 |                     |
|                      |      | (m) <sup>b</sup>    | (m)                    |       |                     |
| Ge(tpp)(OMe)(OH) (3) | 9.04 | 8.28                | 7.79                   | -2.59 | $-6.99^{d}$         |
|                      |      | (m)                 | (m)                    |       | (-6.73)             |
| $Ge(tpp)(OH)_2$ (4)  | 9.03 | 8.26                | 7.77                   | _     | - 6.99 <sup>d</sup> |
|                      |      | (8 Hz) <sup>c</sup> | (7 Hz)                 |       | (-6.70)             |
| MeOH                 | _    | _                   | —                      | 3.34  |                     |
| $Ge(tpp)Cl_2(1)$     | 9.10 | 8.24                | 7.79                   | _     | _                   |
|                      |      | (m)                 | (m)                    |       |                     |

Table 1. Proton chemical shift ( $\delta$ ) for compounds 1-4 and MeOH in CDCl<sub>3</sub> at 24°C<sup>a</sup>

"Chemical shifts in ppm relative to CDCl<sub>3</sub> at 7.24 ppm.

b m = multiplet.

 $^{c3}J(H-H)$  coupling constants in Hz.

<sup>d</sup> Broad singlet.

<sup>e</sup> Measured in CD<sub>2</sub>Cl<sub>2</sub> at -80°C and chemical shifts are given in ppm relative to CD<sub>2</sub>Cl<sub>2</sub> at 5.30 ppm.

| Medium and<br>compound<br>(carbon frequency)                                            | C <sub>a</sub>                | $\mathbf{C}_{\iota}$ | C <sub>2,6</sub> | $C_{\beta}$                   | C <sub>4</sub> | C <sub>3,5</sub> | C <sub>m</sub>                | OMe  |
|-----------------------------------------------------------------------------------------|-------------------------------|----------------------|------------------|-------------------------------|----------------|------------------|-------------------------------|------|
| Ge(tpp)(OMe) <sub>2</sub> ( <b>2</b> )<br><sup>13</sup> C CP/MAS (solid)<br>(50.33 MHz) | 146.5                         | 140.2                | 13               | 2.3                           | 12             | 8.1              | 120.9                         | 47.4 |
| $Ge(tpp)(OMe)_2$ (2)<br>solution                                                        | 146.1<br>(146.4) <sup>b</sup> |                      | 134.6            | 131.1<br>(131.2) <sup>b</sup> | 128.1          | 126.9            | (120.2) <sup><i>b</i></sup>   | -    |
| Ge(tpp)(OMe)(OH) (3) solution                                                           | 145.8<br>(146.0) <sup>b</sup> | 141.2                | 134.7            | 131.2<br>(131.3) <sup>b</sup> | 128.1          | 126.9            | 119.5<br>(120.0) <sup>b</sup> | 43.7 |
| Ge(tpp)(OH) <sub>2</sub> (4)<br>solution                                                | 145.5<br>(145.6) <sup>b</sup> | 141.3                | 134.7            | 131.4<br>(131.4) <sup>b</sup> | 128.1          | 126.9            | 119.3<br>(119.7) <sup>b</sup> |      |
| MeOH                                                                                    |                               |                      | —                |                               |                | _                | · _ ·                         | 50.7 |
| $Ge(tpp)Cl_2(1)$ solution                                                               | 144.9                         | 140.1                | 134.5            | 131.3                         | 128.5          | 127.2            | 118.8                         |      |

| Table 2.       | $^{13}C$ | Chemical | l shift ( | $(\delta)$ of | compounds | 1-4 : | and Me | )H ii | 1 CDCl | 3 at | 24°C at | t 100.61 | MHz | and | <sup>13</sup> C ( | CP/MA | S for |
|----------------|----------|----------|-----------|---------------|-----------|-------|--------|-------|--------|------|---------|----------|-----|-----|-------------------|-------|-------|
| compound $2^a$ |          |          |           |               |           |       |        |       |        |      |         |          |     |     |                   |       |       |

<sup>a</sup> Chemical shifts in ppm relative to the centerline of CDCl<sub>3</sub> at 77.0 ppm.

<sup>b</sup> They were measured in CD<sub>2</sub>Cl<sub>2</sub> at 24°C and chemical shifts were in ppm relative to the centerline of CD<sub>2</sub>Cl<sub>2</sub> at 53.6 ppm.

| Formula                         | $C_{44}H_{28}Cl_2GeN_4$ (1)    | $C_{46}H_{34}GeN_4O_2$ (2)     | $C_{44}H_{30}GeN_4O_2$ (4)        |
|---------------------------------|--------------------------------|--------------------------------|-----------------------------------|
| Formula weight                  | 756.2                          | 747.4                          | 719.3                             |
| a (Å)                           | 13.5872(5)                     | 19.4130(2)                     | 13.3943(4)                        |
| b (Å)                           |                                |                                | 13.3942(3)                        |
| c (Å)                           | 9.9293(5)                      | 9.7952(1)                      | 9.7255(1)                         |
| $V(Å^3)$                        | 1833.1(5)                      | 3691.5(9)                      | 1744.8(1)                         |
| Ζ                               | 2                              | 4                              | 2                                 |
| $D_{\rm c}~({\rm g~cm^{-3}})$   | 1_370                          | 1.345                          | 1.369                             |
| Space group                     | <i>I</i> 4                     | $P4_2/n$                       | I4/m                              |
| <i>F</i> (000)                  | 772                            | 1544                           | 740                               |
| $\mu$ (cm <sup>-1</sup> )       | 10.19                          | 8.75                           | 9.23                              |
| $R^{a}$ (%)                     | 2.84                           | 4.51                           | 2.83                              |
| $R_{w}^{h}$ (%)                 | 3.42                           | 6.17                           | 3.46                              |
| GOF                             | 1.11                           | 1.01                           | 1.82                              |
| $A^{\prime\prime}$              | 1                              | 1                              | 1                                 |
| $B^{h}$                         | $4 \times 10^{-4}$             | $3.1 \times 10^{-3}$           | $6 \times 10^{-4}$                |
| Crystal size (mm <sup>3</sup> ) | $0.31 \times 0.30 \times 0.29$ | $0.62 \times 0.50 \times 0.30$ | $0.175 \times 0.375 \times 0.625$ |
| Data collected                  | 4483                           | 10483                          | 3999                              |
| $2\theta_{\rm max}$ (°)         | 51.1                           | 51.1                           | 50.9                              |
| Temperature (K)                 | 296                            | 296                            | 296                               |
| Data used                       | 1441                           | 2094                           | 795                               |
| Discrimination                  | $I \ge 3.0\sigma(I)$           | $I \ge 3.0\sigma(I)$           | $I \ge 3.0\sigma(I)$              |

| Table 3. Crysta | al data for compound | s Ge(tpp)Cl <sub>2</sub> (1). | Ge(tpp)(OMe), (2   | $(4)$ and $Ge(tpp)(OH)_{2}$ |
|-----------------|----------------------|-------------------------------|--------------------|-----------------------------|
| 14010 51 01 504 | a data for compound  |                               | , oo((pp)(ottio)// |                             |

 $^{\alpha} [\Sigma \| F_o | - |F_c| / \Sigma F_o ]].$ 

<sup>b</sup>  $\mathbf{R}_{w} = [\Sigma w(||F_{o}| - |F_{c}||)^{2} / \Sigma w(|_{o}|)^{2}]^{1/2}; w = A/(\sigma^{2}F_{O} + BF_{O}^{2}).$ 

based on 4614 (or 3314, 3608) symmetry-equivalent reflections using the SHELXTL-PC program package with  $[T_{\min,\max} = 0.780, 0.920 \text{ or } T_{\min,\max} = 0.836, 0.964$  or  $T_{\min,\max} = 0.753, 0.950)]$  for compound 1 (or 2 or 4), respectively. The structures were solved by direct

methods (SHELXTL PLUS) and refined by fullmatrix least-squares. All non-hydrogen atoms were refined with anisotropic thermal parameters, whereas all hydrogen-atom positions were located on a difference map and included in the structure-factor calculation. Selected bond distances and angles for compounds 1, 2 and 4 are given in Table 4.

## **RESULTS AND DISCUSSION**

Molecular structures of  $Ge(tpp)Cl_2$  (1), Ge(tpp)(OMe)<sub>2</sub> (2) and  $Ge(tpp)(OH)_2$  (4)

The skeletal framework of the complexes  $Ge(tpp)Cl_2$  (1), with I4 symmetry [or  $Ge(tpp)(OMe)_2$ (2) with  $P4_2/n$ , Ge(tpp)(OH)<sub>2</sub> (4) with I4/m symmetry] are illustrated in Figs 1(a), (b) and (c). They reveal the six-coordination of the germanium atom (Ge) with four nitrogen atoms of the porphyrinato group and two Cl<sup>-</sup> (or the two OMe<sup>-</sup>, two OH<sup>-</sup>) for compound 1 (or compounds 2 and 4), respectively. Bond distances are Ge(1)—Cl(1) = 2.262(1) and Ge(1) - N(1) = 2.019(2)Å for compound 1. Ge(1) - O(1) = 1.826(3),Ge(1) - N(1) = 2.022(3),Ge(1) - N(2) = 2.041(3), O(1) - C(23) = 1.331(6) Åfor compound **2** and Ge(1)-O(1) = 1.809(3), Ge(1) - N(1) = 2.027(2) Å for compound 4. The geometry about the Ge is a distorted octahedron. The dihedral angles between the mean plane of the skeleton  $(C_{20}N_4)$  and the planes of the phenyl group are 89.2° [C(9)] for compound 1, 70.3 [C(14)],  $69.5^{\circ}$ [C(20)] for compound 2 and 90.0° [C(9)] for compound 4. The Ge atom lies on the geometrical center  $C'_{t}$ ) of the mean plane of the 24-atom core. The radii of the central "hole" ( $C'_t \cdots N$ , distance from the  $C'_t$  to the porphyrinato-core N atoms) are 2.019 Å for compound 1, 2.032 Å for compound 2 and 2.027 Å for compound 4. These distances are slightly larger than 2.01 Å suggested by Collins *et al.* [7]. Hence, the Ge<sup>IV</sup> atom is bonded and centered in a slightly expanded porphyrinato core ( $C_{20}N_4$ ) in compounds 1, 2 and 4. The same space group, I4/m, for compound 4 and the tin analog of 4, Sn(tpp)(OH)<sub>2</sub>, indicate that they are isostructural [8]. The radius of the central hole of 2.027 (or 2.019 Å) for 4 (or 1) is shorter than 2.106 Å (or 2.098 Å) in Sn(tpp)(OH)<sub>2</sub> [or Sn(tpp)Cl<sub>2</sub>] [8, 9].

#### Two-stage hydrolysis of $Ge(tpp)(OMe)_2$ (2)

 $Ge(tpp)(OMe)_2$  (2) is sensitive to hydrolysis. When water is present in a  $CDCl_3$  (or  $CD_2Cl_2$ ) solution of  $Ge(tpp)(OMe)_2$ , resonances due to Ge(tpp)(OMe)(OH) (3) and  $Ge(tpp)(OH)_2$  (4) develop. The hydrolysis of  $Ge(tpp)(OMe)_2$  (2) may be understood in terms of two-stage equilibrium reactions.

$$Ge(tpp)(OMe)_{2} + H_{2}O \xrightarrow{\kappa_{1}}$$
(2)  

$$Ge(tpp)(OMe)(OH) + MeOH \quad (stage 1)$$
(3)  

$$Ge(tpp)(OMe)(OH) + H_{2}O \xleftarrow{\kappa_{2}}$$
(3)  

$$Ge(tpp)(OH)_{2} + MeOH \quad (stage 2)$$
(4)

where  $K_1$  and  $K_2$  are the equilibrium constants for stages 1 and 2. The <sup>13</sup>C NMR spectrum from the hydrolysis of Ge(tpp)(OMe)<sub>2</sub> (2) in CDCl<sub>3</sub> at reaction

| Compound 1<br>Ge(1)—Cl(1)                                                                                                                                                                                                     | 2.262(1)                                                                                 | Ge(1)—N(1)                                                                                                                                                                                                                                     | 2.019(2)                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Cl(1)— $Ge(1)$ — $Cl(1a)Cl(1)$ — $Ge(1)$ — $N(1)Cl(1a)$ — $Ge(1)$ — $N(1a)$                                                                                                                                                   | 180.0(1)<br>90.2(2)<br>89.8(2)                                                           | N(1)—Ge(1)—N(1a)<br>N(1)—Ge(1)—N(1b)                                                                                                                                                                                                           | 179.5(5)<br>90.0(1)                                                                  |
| Compound <b>2</b><br>Ge(1)—O(1)<br>Ge(1)—N(1)                                                                                                                                                                                 | 1.826(3)<br>2.022(3)                                                                     | O(1)—C(23)<br>Ge(1)—N(2)                                                                                                                                                                                                                       | 1.331(6)<br>2.041(3)                                                                 |
| $\begin{array}{l} C(23) & - O(1) - Ge(1) \\ O(1) - Ge(1) - O(1a) \\ N(1) - Ge(1) - N(2) \\ N(1) - Ge(1) - N(1a) \\ N(1) - Ge(1) - N(2a) \\ N(2) - Ge(1) - N(1a) \\ N(2) - Ge(1) - N(2a) \\ N(1a) - Ge(1) - N(2a) \end{array}$ | 125.4(3)<br>180.0(1)<br>90.2(1)<br>180.0(1)<br>89.8(1)<br>89.8(1)<br>180.0(1)<br>90.2(1) | $\begin{array}{l} O(1) & -Ge(1) & -N(1) \\ O(1) & -Ge(1) & -N(2) \\ O(1) & -Ge(1) & -N(1a) \\ O(1) & -Ge(1) & -N(2a) \\ O(1a) & -Ge(1) & -N(1) \\ O(1a) & -Ge(1) & -N(2) \\ O(1a) & -Ge(1) & -N(1a) \\ O(1a) & -Ge(1) & -N(2a) \\ \end{array}$ | 93.4(1)<br>87.9(1)<br>86.6(1)<br>92.1(1)<br>86.6(1)<br>92.1(1)<br>93.4(1)<br>87.9(1) |
| Compound 4<br>Ge(1)—O(1)<br>O(1)—Ge(1)—O(1a)<br>O(1)—Ge(1)—N(1)                                                                                                                                                               | 1.809(3)<br>180.0(1)<br>90.0(1)                                                          | Ge(1)—N(1)<br>N(1)—Ge(1)—N(1a)<br>N(1)—Ge(1)—N(1b)                                                                                                                                                                                             | 2.027(2)<br>180.0(1)<br>90.0(1)                                                      |

Table 4. Selected bond distances (Å) and bond angles (°) for compounds 1, 2 and 4



Fig. 1. Molecular configurations and atoms labeling schemes for (a)  $Ge(tpp)Cl_2$  (1), (b)  $Ge(tpp)(OMe)_2$  (2) and (c)  $Ge(tpp)(OH)_2$  (4). Hydrogen atoms are omitted for clarity.



Fig. 2. The 100.61 MHz <sup>13</sup>C broad band NMR spectrum for Ge(tpp)(OMe)<sub>2</sub> (2) hydrolysis in CDCl<sub>3</sub> at 24°C after reaction time of several minutes.



where X = OMe



Fig. 3. High-resolution solid-state <sup>13</sup>C CP/MAS spectrum of Ge(tpp)(OMe)<sub>2</sub> (2) at 50.33 MHz with a spinning rate of 3.2 KHz at 24°C. Assignments : singlet at 146.5 ppm,  $C_a$ ; singlet at 140.2 ppm,  $C_1$ ; multiplet at 132.3 ppm,  $C_{2,6}$  and  $C_{\beta}$ ; multiplet at 128.1 ppm,  $C_4$  and  $C_{3,5}$ ; singlet at 120.9 ppm,  $C_{meso}$ ; singlet at 47.4 ppm, O—Me. Spinning sidebands are labelled with an asterisk (\*).

time t (= several minutes) after dissolution is shown in Fig. 2. It is dominated by the Ge(tpp)(OH)<sub>2</sub> resonance (0), with a smaller resonance (\*) for Ge(tpp)(OMe) (OH), and the least  $Ge(tpp)(OMe)_2$  resonance ( $\Delta$ ). The methanol resulting from the hydrolysis of compounds 2 and 3 shown in stages 1 and 2 is found to be at  $\delta = 3.34$  ppm from <sup>1</sup>H NMR (shown in Table 1) and 50.7 ppm from <sup>13</sup>C NMR measurement (shown in Table 2). At equilibrium, the relative concentrations of 2, 3 and 4 for  $Ge(tpp)(OMe)_2$  (2) in  $CD_2Cl_2$  at 24°C are 24, 39 and 37%, respectively. The ratio of  $K_1/K_2 = 1.7$  is evaluated for the hydrolysis of compound (2) at the same temperature. It is difficult to isolate compound 2 from the above mixture. However, solid-state <sup>13</sup>C NMR provides a complementary method for identifying compound 2. The solid-state <sup>13</sup>C CP/MAS spectra of compound 2 at 24°C is shown in Fig. 3 and Table 2. Six major resonances with the  $\alpha$  carbon (C<sub>a</sub>) at  $\delta = 146.5$ , C<sub>1</sub> at  $\delta = 140.2$ , C<sub>2.6</sub> and C<sub> $\beta$ </sub> at  $\delta = 132.3$ , C<sub>4</sub> and C<sub>3.5</sub> at  $\delta = 128.1$ , meso carbon (C<sub>m</sub>) at  $\delta = 120.9$  and OMe carbon at  $\delta = 47.4$  ppm were observed. For comparison, the hydrolysis of  $Sn(tpp)(OMe)_2$ and Sn(tptp)(OMe)<sub>2</sub> is a two-stage (irreversible) competitive consecutive second-order reaction [5, 6], whereas that of Ge(tpp)(OMe)<sub>2</sub> is a two-stage (reversible) equilibrium reaction.

Acknowledgements—Financial support from the National Research Councils of the Republic of China under Grants NSC 86-2113-M-005-008 and NSC 85-2113-M005-001 is gratefully acknowledged.

### REFERENCES

- Maskasky, J. E. and Kenney, M. E., J. Am. Chem. Soc., 1973, 95, 1443.
- Mavridis, A. and Tulinsky, A., *Inorg. Chem.*, 1976, 15, 2723.
- Guilard, R., Barbe, J. M., Boukhris, A., Lecomte, C., Anderson, J. E., Xu, Q. Y. and Kadish, K. M., J. Chem. Soc., Dalton Trans. 1988, 1109.
- Balch, A. L., Cornman, C. R. and Olmstead, M. M., J. Am. Chem. Soc., 1990, 112, 2963.
- Lin, H. J., Chen, J. H. and Hwang, L. P., Aust. J. Chem., 1991, 44, 74.
- Tsai, C. C., Chen, Y. J. and Hwang, L. P., Polyhedron, 1992, 11, 1647.
- Collins, D. M. and Hoard, J. L., J. Am. Chem. Soc., 1970, 92, 3761.
- Smith, G., Arnold, D. P., Kennard, C. H. L. and Mak, T. C. W., *Polyhedron*, 1991, 10, 509.
- Collins, D. M., Scheidt, W. R. and Hoard, J. L., J. Am. Chem. Soc., 1972, 94, 6689.